A New Dataset of Spermatogenic vs. Oogenic Transcriptomes in the Nematode Caenorhabditis elegans
نویسندگان
چکیده
The nematode Caenorhabditis elegans is an important model for studies of germ cell biology, including the meiotic cell cycle, gamete specification as sperm or oocyte, and gamete development. Fundamental to those studies is a genome-level knowledge of the germline transcriptome. Here, we use RNA-Seq to identify genes expressed in isolated XX gonads, which are approximately 95% germline and 5% somatic gonadal tissue. We generate data from mutants making either sperm [fem-3(q96)] or oocytes [fog-2(q71)], both grown at 22°. Our dataset identifies a total of 10,754 mRNAs in the polyadenylated transcriptome of XX gonads, with 2748 enriched in spermatogenic gonads, 1732 enriched in oogenic gonads, and the remaining 6274 not enriched in either. These spermatogenic, oogenic, and gender-neutral gene datasets compare well with those of previous studies, but double the number of genes identified. A comparison of the additional genes found in our study with in situ hybridization patterns in the Kohara database suggests that most are expressed in the germline. We also query our RNA-Seq data for differential exon usage and find 351 mRNAs with sex-enriched isoforms. We suggest that this new dataset will prove useful for studies focusing on C. elegans germ cell biology.
منابع مشابه
Genomic Analyses of Sperm Fate Regulator Targets Reveal a Common Set of Oogenic mRNAs in Caenorhabditis elegans
Germ cell specification as sperm or oocyte is an ancient cell fate decision, but its molecular regulation is poorly understood. In Caenorhabditis elegans, the FOG-1 and FOG-3 proteins behave genetically as terminal regulators of sperm fate specification. Both are homologous to well-established RNA regulators, suggesting that FOG-1 and FOG-3 specify the sperm fate post-transcriptionally. We pred...
متن کاملExtramural Update January 2004
Inheritance of paternal genetic information requires proper sperm development and DNA packaging. A proteomic analysis of sperm chromatin in Caenorhabditis elegans has identified conserved proteins that are important for the transmission of sperm DNA and for male fertility. Published: 1 December 2006 Genome Biology 2006, 7:124 (doi:10.1186/gb-2006-7-12-244) The electronic version of this article...
متن کاملRNAi Effector Diversity in Nematodes
While RNA interference (RNAi) has been deployed to facilitate gene function studies in diverse helminths, parasitic nematodes appear variably susceptible. To test if this is due to inter-species differences in RNAi effector complements, we performed a primary sequence similarity survey for orthologs of 77 Caenorhabditis elegans RNAi pathway proteins in 13 nematode species for which genomic or t...
متن کاملSystem Wide Analysis of the Evolution of Innate Immunity in the Nematode Model Species Caenorhabditis elegans and Pristionchus pacificus
The evolution of genetic mechanisms used to combat bacterial infections is critical for the survival of animals and plants, yet how these genes evolved to produce a robust defense system is poorly understood. Studies of the nematode Caenorhabditis elegans have uncovered a plethora of genetic regulators and effectors responsible for surviving pathogens. However, comparative studies utilizing oth...
متن کاملDetermination of the effects of food preservatives benzoic acid and sodium nitrate on lifespan, fertility and physical growth in Caenorhabditis elegans
Presently, the use of protective food additives such as benzoic acid and sodium nitrate is quite common. However, it was found that these additives, which initially appeared to be harmless, led to the emergence of a number of health problems. Cancer and diseases and deaths with no apparent causes are among the leading concerns. Therefore, the studies which can reveal the genotoxic potential of ...
متن کامل